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ABSTRACT

Two spatial verification methods are applied to ensemble forecasts of low-level rotation in supercells:

a four-dimensional, object-basedmatching algorithm and the displacement and amplitude score (DAS) based

on optical flow. Ensemble forecasts of low-level rotation produced using the National Severe Storms Lab-

oratory (NSSL) Experimental Warn-on-Forecast System are verified against WSR-88D single-Doppler azi-

muthal wind shear values interpolated to the model grid. Verification techniques are demonstrated using four

60-min forecasts issued at 15-min intervals in the hour preceding development of the 20 May 2013 Moore,

Oklahoma, tornado and compared to results from two additional forecasts of tornadic supercells occurring

during the springs of 2013 and 2014.

The object-based verification technique and displacement component of DAS are found to reproduce

subjectively determined forecast characteristics in successive forecasts for the 20May 2013 event, as well as to

discriminate in subjective forecast quality between different events. Ensemble-mean, object-based measures

quantify spatial and temporal displacement, as well as stormmotion biases in predicted low-level rotation in a

manner consistentwith subjective interpretation. Neithermethod produces usefulmeasures of the intensity of

low-level rotation, owing to deficiencies in the verification dataset and forecast resolution.

1. Introduction

An important component of the National Oceanic

andAtmospheric Administration’s (NOAA)Warn-on-

Forecast project is the production of probabilistic,

short-term guidance for tornado potential using an

ensemble of convection-allowing numerical weather

prediction models (Stensrud et al. 2009, 2013). Work-

ing toward this goal, many recent experiments have

produced promising short-term (0–1 h) forecasts for

low-level rotation in case studies of tornadic supercells

(Dawson et al. 2012; Yussouf et al. 2013; Sobash and

Wicker 2014; Jones et al. 2016; Wheatley et al. 2015;

Yussouf et al. 2015) and quasi-linear convective sys-

tems (QLCSs; Snook et al. 2012; Putnam et al. 2014;

Snook et al. 2015) initialized through the variational or

ensemble Kalman filter (EnKF; e.g., Evensen 1994)

based assimilation of Doppler radar data.1 These

forecasts have typically been visualized as a swath of

probabilities that low-level vertical vorticity will

exceed a certain threshold, which is then compared to

observed tornado damage tracks or single-Doppler

rotation tracks (Miller et al. 2013) to evaluate the

forecast quality. These studies have regularly produced

maximum probabilities of low-level rotation coincident

with observed tornado tracks, qualitatively indicating a

skillful forecast. However, automated, quantitative

measures of ensemble forecast skill are needed for

intercomparing large numbers of forecasts, as would

be produced by an operational Warn-on-Forecast sys-

tem. Development of consistent, objective measures of
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forecast quality will assist in determining best practices

for an operational Warn-on-Forecast system by quan-

tifying differences in forecasts run with variable model

parameters and allowing system performance in dif-

ferent meso- and synoptic-scale environments to be

compared.

As an operational Warn-on-Forecast system will pro-

vide guidance on hazard potential in individual thun-

derstorms, feature-based verification of the forecasts will

be required. Additionally, diagnostic information on

specific storm features, such as mesocyclones, will be

important for assessing the contributing error sources

in individual forecasts. Spatial verification techniques

[see Gilleland et al. (2009) and (2010) for recent reviews]

are ideally suited for this problem, as they can avoid

the double-penalty problem small position errors

can induce in point-to-point verification (Wilks 2006);

quantify differences between features in forecast and

verification fields; and provide extensive diagnostic

information on specific characteristics of features in the

forecast and verification fields (e.g., Clark et al. 2014;

Wolff et al. 2014; Cai and Dumais 2015; Pinto et al.

2015).

Spatial verification techniques have been widely

employed to assess the skill of quantitative precipitation

forecasts from convection-allowing numerical models

(e.g., Davis et al. 2006b; Kain et al. 2008; Davis et al.

2009; Ebert 2009; Keil and Craig 2009; Schwartz et al.

2009; Marzban et al. 2009; Clark et al. 2010, 2011;

Johnson et al. 2011; Johnson and Wang 2012; Johnson

et al. 2013). Though many variations of spatial verifica-

tion have been developed, those based on object iden-

tification and matching (Davis et al. 2006a,b; Ebert and

Gallus 2009; Gallus 2010; Clark et al. 2012; Burghardt

et al. 2014; Clark et al. 2014;Wolff et al. 2014; Pinto et al.

2015; Cai and Dumais 2015) or field deformation

methods such as optical flow (Keil and Craig 2007, 2009;

Marzban and Sandgathe 2010) are particularly appeal-

ing for verification of low-level rotation forecasts. This

appeal is attributable to the ability of object-based and

field deformation techniques to provide feature-based

verification as well as to quantify components of forecast

error. These two techniques have been recently used for

applications similar to the objectives of the Warn-on-

Forecast project. Clark et al. (2012, 2013) employed

object-based techniques to compare the length of sim-

ulated updraft helicity tracks produced by an ensemble

of convection-allowing models to observed tornado

pathlengths and the optical-flow-based displacement

and amplitude score (DAS; Keil and Craig 2009) has

been used to quantify spatial errors for individual

storms in a storm-scale ensemble forecast (Lange and

Craig 2014).

This study applies an object-based verification tech-

nique based on theMethod for Object-based Diagnostic

Evaluation (MODE; Davis et al. 2006a,b) and the dis-

placement and amplitude score of Keil and Craig (2009)

to ensemble forecasts of low-level rotation produced

by the National Severe Storms Laboratory (NSSL)

Experimental Warn-on-Forecast System (NEWS-e;

Wheatley et al. 2015; Jones et al. 2016). The verification

techniques are demonstrated using a series of four 1-h

ensemble forecasts initialized at 15-min intervals by the

NEWS-e for multiple tornadic supercells on 20 May

2013, including the parent storm of an [enhanced Fujita

(EF) scale] EF5 tornado that struck Moore, Oklahoma

(Atkins et al. 2014; Burgess et al. 2014). Forecasts are

verified against single-Doppler azimuthal wind shear

values calculated from Frederick (KFDR) and Okla-

homa City (KTLX), Oklahoma, WSR-88D data in-

terpolated to the model grid. Forecasts are first

examined qualitatively to identify strengths and weak-

nesses (i.e., biased storm motion or overprediction of

low-level rotation) expected to be captured by the ob-

jective verification scores. The two objective techniques

are then applied to each forecast and evaluated on their

ability to accurately and consistently match the sub-

jective interpretation. The 20 May forecasts are then

compared to other NEWS-e cases from the springs of

2013 and 2014 to assess the quality of the verification

methods with varying storm mode and evolution.

Descriptions of the NEWS-e system and forecasts,

development of an observational proxy for verification

and of the two verification techniques are provided in

section 2. An overview of the 20 May 2013 event and

qualitative verification are presented in section 3, with

objective verification and comparison to additional

NEWS-e cases following in section 4. Conclusions and

recommendations for future research are provided in

section 5.

2. Methodology

a. NEWS-e description

The NEWS-e is a multiscale data assimilation system

that uses a 36-member ensemble forecast from ARW,

version 3.4.1 (Skamarock et al. 2008) as an initial state

and assimilates conventional and Doppler radar obser-

vations using an EnKF technique provided by the Data

Assimilation Research Testbed (DART; Anderson and

Collins 2007; Anderson et al. 2009). For each NEWS-e

case, a mesoscale parent grid with 15-km horizontal grid

spacing is initialized at 0000 UTC the day of the target

case from downscaled output from the Global Ensem-

ble Forecast System. Conventional observations of
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pressure, temperature, dewpoint temperature, and

horizontal wind components provided by the NOAA

Meteorological Assimilation Data Ingest System

(Miller et al. 2007) are assimilated into the ensemble

hourly to provide a representative mesoscale back-

ground for the inner domain. Following convection

initiation, a finescale, one-way nested inner domain

with 3-km horizontal grid spacing is initialized from

the mesoscale analysis. Radar reflectivity and radial

velocity data from three WSR-88D radars within the

inner domain are objectively analyzed to a 6-km grid

and assimilated using DART at 15-min intervals.

When available, surface observations from the Okla-

homa Mesonet are additionally assimilated into the

inner domain. Storm-scale, 60-min forecasts are ini-

tialized following each cycle until genesis of the

strongest tornado observed, according to Storm Data,

for each case. Readers are referred to Wheatley et al.

(2015) for a complete description of the NEWS-e

methodology.

b. Observational dataset description

As observed vertical vorticity is not available without

specialized observations, an imperfect proxy for low-

level rotation must be developed to serve as a verifica-

tion dataset. A natural choice to serve as this dataset is

single-Doppler azimuthal wind shear, which is equal to

half the vertical vorticity for solid-body rotation and is

regularly used to create mesocyclone rotation tracks

(e.g., Miller et al. 2013). For each case considered

herein, azimuthal wind shear is calculated for radial

velocity data from the nearest one or two WSR-88D

radars to target storms following the process outlined by

Newman et al. (2013). Radar data are first dealiased and

nonmeteorological echoes are removed using the algo-

rithm developed by Lakshmanan et al. (2014). Range-

corrected azimuthal wind shear is then calculated using

the linear least squares derivative (LLSD) method

(Smith and Elmore 2004; Newman et al. 2013) for each

available radar sweep. Finally, each sweep of azi-

muthal wind shear data is interpolated to the storm-

scale NEWS-e domain using a Cressman scheme

with a 3- (2-) km horizontal (vertical) radius of influ-

ence and multiplied by 2 to be equivalent to values of

vertical vorticity using the assumption of solid-body

rotation.

The objectively analyzed sweeps of azimuthal wind

shear are aggregated to create a verification low-level

rotation field with identical space and time dimensions

as the forecast low-level rotation field by merging values

from each sweep within a 5-min window centered on

the forecast time. Advection correction is not applied

to sweeps with a temporal offset; however, maximum

errors resulting from storm motion are expected to be

approximately equal to a single grid point (3 km) for

cases considered herein.2 Additionally, at least one az-

imuthal wind shear observation below 1500m above

ground level (AGL) is required at each point in the

verification field in order to ensure that the low-level

(defined herein as the lowest 2 kmAGL)mesocyclone is

being sampled. It is noted that azimuthal wind shear

observations from at least one radar were available be-

low 1500m for the entirety of each rotation track

considered herein.

c. Postprocessing of forecast and verification fields

A drawback of object- and optical-flow-based verifi-

cation methods is that both feature a large number of

tunable parameters. To mitigate the impact of sub-

jectively determined parameters in verification, the

forecast and observation fields are postprocessed to

isolate the features of interest, as recommended by

Wolff et al. (2014). As this study is concerned with

forecasts of tornado potential, the presence of a low-

level mesocyclone is used as an imperfect (Trapp et al.

2005), but best available, observational proxy for tor-

nado occurrence. Therefore, NEWS-e vertical vorticity

andWSR-88D azimuthal wind shear are processed in an

attempt to isolate low-level mesocyclones.3

Low-level rotation is initially calculated as the av-

erage vertical vorticity (twice the azimuthal wind

shear) in the 500–2000-m layer for each forecast (ver-

ification) field time step (Figs. 1a,e). Discrepancies

between the initial layer-mean values in the verification

and forecast fields are apparent, with the vertical vor-

ticity field in NEWS-e members containing broader

and a larger number of vorticity maxima than obser-

vations.4 Variation in the spatial extent of rotational

maxima is mitigated, as in Wheatley et al. (2015), by

application of a 3 3 3 gridpoint maximum value filter

(Figs. 1b,f). Maxima are then further broadened and

2 For example, a 20m s21 storm motion and the maximum al-

lowable temporal offset of 150 s would result in a 3-km spatial

displacement at the analysis time.
3 Low-level mesocyclones typically occur on a much smaller

scale than the effective NEWS-e resolution at 3-km grid spacing

[e.g., approximately 20 km or 7Dx Skamarock (2004)]. However,

idealized simulations by Potvin and Flora (2015) have demon-

strated that supercell processes can be adequately resolved at this

grid spacing, leading to simulated low-level mesocyclones that

behave similarly to those with finer grid spacing (Potvin and

Flora 2015).
4 One of the noisier ensemble members was selected for Fig. 1 in

order to emphasize differences between the observations; however,

each member exhibits a broader vertical vorticity field than the

observations.
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smoothed by applying a 5 3 5 gridpoint Gaussian con-

volution kernel (Figs. 1c,g). The smoothed rotation

fields are then thresholded to isolate the strongest

regions of rotation, and values following the applica-

tion of the gridpoint maximum filter are restored to

grid points exceeding the threshold (Figs. 1d,h), as was

done in Davis et al. (2006a; their Fig. 2). Different

thresholds are applied to twice the azimuthal wind

shear (Obthresh 5 0.001 s21) and vertical vorticity

(Fcstthresh 5 0.003 s21) fields. The different thresholds

are utilized to retain as much of the observed rotation

field as possible without creating false positives and to

remove as much of the weak, broad rotation as pos-

sible from the forecast field. The convolution and

thresholding process is adapted from the MODE

software (Davis et al. 2006a), and filter sizes and

threshold values have been determined through trial

and error.

d. Object-based verification

The object-based verification method used herein is

based on the MODE software (Davis et al. 2006a,b)

and has been developed using the scikit-image library

for the Python programming language (Van der Walt

FIG. 1. Illustration of the postprocessing applied to the 20May 2013 event for (top) twice themerged KTLX andKFDR azimuthal wind

shear values and (bottom) the vertical vorticity output from a single NEWS-e member overlaid on an Oklahoma county map (thin gray

lines). The (a),(e) 500–2000-m layermean values are initially calculated for both fields. Afterward a (b),(f) 33 3 gridpointmaximumvalue

and (c),(g) a 53 5 grid point convolution filter are applied to the mean values. The smoothed fields are then thresholded at (d) Obthresh5
0.001 s21 or (h) Fcstthresh 5 0.003 s21, and the values following the application of the maximum value filter are restored to grid points

exceeding the threshold. All fields are valid at 2010 UTC, and the NEWS-e forecast was initialized at 1945 UTC. The 0.001 s21 contour of

twice the azimuthal wind shear in (d) is plotted in dark gray in (e)–(h), and the damage path of the Moore tornado is marked in black.

716 WEATHER AND FORECAST ING VOLUME 31

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 07:50 PM UTC



et al. 2014). Each contiguous area of low-level rotation

at a specified time within the forecast and verification

datasets is considered a single rotation object. The

primary objective of a successful forecast is the pre-

diction of a low-level rotation object in spatial and

temporal proximity to an observed object. Therefore,

the best match between forecast and observed objects

for each ensemble member is found using a total

interest score (Davis et al. 2009) weighted heavily on

closeness in time and space. The total interest is cal-

culated for every pair of forecast and observed rota-

tion objects, including those offset in time, and is

calculated as

I
ij
5w

dt

8<
:
2
4(dmax

2 d
ij
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d
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2 t
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a
ijmax

!
,

(1)

where Iij represents the total interest between a given

forecast and observed object, dij (tij) is the centroid

distance (time offset) between the objects, dmax (tmax) is

the maximum allowable centroid distance (time offset)

for matching objects, and aij is the area of an object,

sorted such that the object with the larger area aijmax
is

the denominator. The spatiotemporal component of

the total interest calculation is weighted far more

heavily (wdt 5 0.9) than the areal component (wa 5
0.1), with the areal component intended to serve as a

‘‘tiebreaker’’ for objects with similar space and time

offsets. Maximum allowable offsets in time tmax and

space dmax are chosen according to the expected limits

of usefulness for the forecast and set to 25min and

30 km, respectively.

Matches between forecast and observed rotation ob-

jects are determined by the maximum available total

interest value, with the condition that it exceeds 0.2

(verification score sensitivity to the total interest

threshold is examined in the appendix). Each forecast

object may only be matched to one rotation object.

However, as a result of the ensemble and temporal

aspects to object matching, a single observed object

may be matched to many forecast objects within dif-

ferent ensemble members and at different times. For

verification purposes, matched objects can be consid-

ered analogous to forecast ‘‘hits,’’ with unmatched ob-

served objects ‘‘misses’’ and unmatched forecast

objects ‘‘false alarms.’’ Classification in this manner

allows quantities similar to the probability of detection

(POD) and false alarm ratio (FAR) to be calculated

using the standard contingency table formulation

(Wilks 2006). Additionally, the object-based threat

score (OTS) can be calculated according to the formula

defined by Johnson et al. (2011) and Johnson andWang

(2013):

OTS5
1

A
f
1A

o

"
�
P

p51

Ip(ap
f 1 ap

o)

#
, (2)

whereAf andAo represent the total area of forecast and

observed objects, and af and ao the area of individual

forecast and observed objects, respectively. The com-

bined area of a pair of matched objects (denoted by

superscript p) is weighted by total interest [Ip; which is

equivalent to Iij in Eq. (1)] and summed over each of P

matched object pairs. In other words, the OTS repre-

sents the ratio of the matched object area, weighted by

total interest, to the total object area within a given

verification domain. A ‘‘binary’’ OTS (Johnson et al.

2011) can be calculated by setting the total interest to 1

for each matched object pair, so that the resulting score

is the ratio of the matched object area to the total object

area. A perfect forecast, where observed and forecast

objects are identical in position, timing, and area, will

result in weighted and binary OTS scores of 1.

In addition to the interest and OTS scores, individual

properties of matched objects can be compared to

quantify the performance of various aspects of the

forecast. The ratio of maximum intensity of matched

objects, the total centroid or time displacement, and the

zonal and meridional components of matched-object

centroid displacement are considered herein; however,

many additional quantities may be considered according

to case-specific verification priorities (e.g., Wolff et al.

2014; Cai and Dumais 2015; Pinto et al. 2015).

e. Displacement and amplitude score

The displacement and amplitude score developed by

Keil and Craig (2007, 2009) is also used to verify the

forecast and observed rotation fields. The DAS score is

based on a pyramidal image matching algorithm (Keil

and Craig 2007), which will calculate displacement

vectors that morph a forecast field to a verification field,

or vice versa, while minimizing amplitude-based error

(Keil and Craig 2009). Displacement error is calculated

as the magnitude of the displacement vectors and am-

plitude error is defined as the root-mean-square error

between the verification and morphed fields, with both

errors only calculated where the verification field is

nonzero. Morphing is performed both from forecast to

observation and observation to forecast fields, with total

displacement (DIS) and amplitude (AMP) scores cal-

culated as averages of the two morphs weighted by the

number of nonzero grid points in the respective verifi-

cation fields. Normalized DIS and AMP scores are cal-

culated by dividing the total scores by a maximum

JUNE 2016 SK INNER ET AL . 717

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 07:50 PM UTC



allowable displacement and a characteristic intensity

typical of the amplitude of the observed features. For

the cases considered herein, the maximum allowable

distance of features is set to 30 km, as in the object-based

verification, and characteristic intensity is defined as the

root-mean-square amplitude of the observed field, as

done by Keil and Craig (2009). The combined DAS

score is simply equal to the sum of the normalized DIS

and AMP scores. Perfect forecasts will result in DIS and

AMP scores of 0, and there is no upper limit to the

scores. Readers are referred to Keil and Craig (2007,

2009) for a complete description of the displacement

and amplitude score.

3. Overview and subjective verification for 20 May
2013

a. Storm evolution

The period of interest for the 20May 2013 case is from

1915 to 2100 UTC, during which 60-min NEWS-e fore-

casts were initialized at 1915, 1930, 1945, and 2000 UTC.

This period covers the development of three supercells

from the incipient throughmature stages (Fig. 2), as well

as the life cycle of the Moore tornado, which occurred

from 1956 to 2035 UTC according to Storm Data. At

1915 UTC, developing convection is present across a

line oriented from south-southwest to north-northeast

within the verification domain (Fig. 2a). The eventual

Moore supercell (denotedM in Fig. 2) is present as weak

echoes southwest of the damage track, and the two

strongest storms (denoted by D and C in Fig. 2) are

located farther south in the center of the verification

domain. The northern cell of these two storms (D)

weakens and merges into the forward flank of the in-

tensifying Moore supercell over the following hour

while the southern cell (C) continues to intensify and

produces two tornadoes east of Duncan, Oklahoma,

between 1958 and 2022 UTC (Fig. 2). Initially multicell

storms in the southern portions of the verification do-

main (S in Fig. 2) congeal into a third supercell by

2000 UTC (Figs. 2a–c), but no tornadoes associated

with this supercell were documented during the period

of interest.

The low-level mesocyclone path of each of the three

supercells is apparent in rotation tracks created by

merging maximum azimuthal wind shear values in the

verification dataset for each time during the period of

interest (Fig. 3). As would be expected, the azimuthal

wind shear associated with the Moore supercell is far

stronger andmore expansive than is observed within the

other two supercells. However, the strongest azimuthal

wind shear values occur over the first half of the Moore

damage track, with smaller maximum values, similar in

magnitude to the other two tracks, over the second half

of the track. Rotation tracks from the central and

southern supercells within the domain are brief and in-

termittent, consistent with weaker low-level mesocy-

clones than the Moore supercell.

b. Subjective verification

Probabilistic rotation swaths are produced as the

maximum probability of exceedance for mean 0–2km

FIG. 2. KTLX 0.58 radar reflectivity at (a) 1916:58, (b) 1946:55, (c) 2016:43, and (d) 2042:15 UTC. The Moore supercell, central domain

supercell, and southern supercell are annotated M, C, and S, respectively, and the dissipating storm in the center of the domain is

annotated D. The damage track of the Moore tornado is marked in black.
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AGL vertical vorticity greater than Fcstthresh at any time

within the forecast period.5 For the 1915 UTC forecast,

probabilities of low-level rotation are generally less than

30% along the track of the Moore supercell and are

displaced to the northeast of the observed track. Maxi-

mum probabilities of low-level rotation in the forecast

occur along the track of the supercell in the center of the

domain (Fig. 4a). Improvement in the forecast of the

Moore supercell is apparent in each of the subsequent

three forecasts, with maximum probabilities increasing

to over 90% and shifting southwestward over the ob-

served rotation and damage paths (Figs. 4b–d). Proba-

bilities of low-level rotation along the track of the

supercell in the center of the domain generally decrease

following the 1930 UTC forecast and become displaced

ahead of and to the south of the observed rotation track

(Figs. 4b–d). Probabilities of low-level rotation associ-

ated with the track of the southern supercell remain

below 40% for each forecast (Figs. 4a–d).

The intensity of the predicted low-level rotation is

assessed by calculating the ensemble 90th percentile

value of the mean 0–2-km vertical vorticity at each grid

point, then taking the maximum gridpoint values for

any forecast time to create a rotation swath (Figs. 4e–h).

Similarly to the probabilistic swaths, these rotation

tracks show intensifying rotation along the path of the

Moore supercell in each successive forecast, with the

highest values present along the first half of the ob-

served Moore rotation track in the 1945 and 2000 UTC

forecasts. Upward trends in both the spatial extent

and intensity are additionally apparent in subse-

quent forecasts for the tracks of the two southern

supercells, with 90th percentile values associated with

the central domain supercell similar in magnitude to

values along the track of the Moore supercell in the

1945 and 2000 UTC forecasts (Figs. 4g,h). This simi-

larity in the 90th percentile values along the tracks of

the Moore and central domain supercells contrasts the

large differences in azimuthal wind shear between the

two tracks (Fig. 3) and suggests a lack of intensity

variation among ensemble members, likely attribut-

able in part to forecasts poorly resolving the low-level

mesocyclone with 3-km horizontal grid spacing (Potvin

and Flora 2015).

Smaller temporal variability in forecast low-level

mesocyclone intensity than observed azimuthal wind

shear values is apparent when the ensemble mean and

90th percentile vertical vorticity values along the track

of the Moore supercell are examined (Fig. 5). The en-

semble mean magnitudes of forecast vertical vorticity

generally increase with increasing time but exhibit rel-

atively little variability across different forecasts

(Fig. 5a). This lack of variability is confirmed in variance

calculations of ensemble maximum vertical vorticity

values, which remain below 13 1024 s21 for themajority

of each forecast (not shown). More variation is apparent

when the 90th percentile values are considered, with the

1945 and 2000UTC forecasts producing relativemaxima

at similar times to the observed maximum rotation

within the Moore low-level mesocyclone. However,

strong rotation is maintained after the dissipation of the

Moore tornado in both the 1945 and 2000UTC forecasts

(Fig. 5b).

FIG. 3. Azimuthal wind shear swath (s21) from 1915 to 2100 UTC.

Values represent twice the maximum mean 500–2000-m azimuthal

wind shear during the time period at each grid point. The Moore

supercell, central domain supercell, and southern supercell are

annotated M,C, and S, as in Fig. 2.

5 Discrepancies between Fig. 4 and the probability swaths pre-

sented in Wheatley et al. (2015) are attributable to methodology

differences in calculating low-level rotation fields. The samemodel

output is used by both studies.
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The evolution of the ensemble forecasts with time can

be visualized by comparing the predicted locations of

maximum vertical vorticity to the observed location

within a 0.88 latitude 3 1.08 longitude subset of the full

verification domain containing the track of the Moore

supercell (Fig. 6). Within this domain, each successive

forecast provides an improvement in the predicted

storm and low-level mesocyclone location valid for a

specific time (cf. panels from left to right across each row

in Fig. 6). Additionally, the positions of vertical vorticity

maxima for a given time are more tightly clustered with

each successive forecast, indicating smaller spread and

higher confidence in the location of low-level rotation.

While each successive forecast provides an improve-

ment over the prior one for a specific time, degradation

of each forecast with time is also apparent (cf. panels

from top to bottom down each column in Fig. 6). Fur-

thermore, an obvious high bias in storm speed, at times

exceeding 5ms21, is present, resulting in predicted

vorticity maxima consistently located downstream of

observations and becoming farther displaced with in-

creasing forecast time. Similar high biases in storm

speed have been regularly identified in recent probabi-

listic low-level rotation forecasts (e.g., Yussouf et al.

2013; Wheatley et al. 2015; Jones et al. 2016; Yussouf

et al. 2015) and research is ongoing to identify the origins

of the bias.

Subjectively identified characteristics of NEWS-e

forecasts for 20 May 2013 may be summarized as

follows:

FIG. 4. Probabilities of 500–2000-m average vertical vorticity exceeding 0.003 s21 (Fcstthresh) at any time over 1-h forecasts initialized at

(a) 1915, (b) 1930, (c) 1945, and (d) 2000 UTC. (e)–(h) The 90th percentile value of ensemble vertical vorticity along each swath. The

0.001 s21 (Obthresh) contour of twice the observed azimuthal wind shear is plotted in dark gray, and the damage path of theMoore tornado

is marked in black.
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d Low-level rotation forecasts for each of the three

supercells generally improve in accuracy with each

successive forecast, with the largest improvements

present along the track of theMoore supercell (Fig. 4).
d Forecasts of low-level rotation intensity are of lower

quality than track forecasts and exhibit smaller spatio-

temporal variation than observations (Figs. 4 and 5).
d All forecasts decay in quality with increasing forecast

time, and a large high bias in storm speed is present

(Fig. 6).

The object-based and DAS verification methods are

evaluated according to their ability to reproduce these

subjectively assessed characteristics.

4. Spatial verification for 20 May 2013

a. Object-based verification

The quality of the object-based verification is initially

assessed by considering gridpoint probabilities ofmatched

and false alarm rotation objects (Fig. 7). As portions of the

rotation objects may overlap spatially across different

ensemble members, grid points may contain nonzero

probabilities of beingwithin bothmatched and false alarm

objects (e.g., Figs. 7k,l). This overlap most often occurs

when spatial and temporal displacement between forecast

and observed objects approaches the maximum allowable

offsets and the resulting total interest scores [Eq. (1)] are

near the applied threshold of 0.2. Modification of the

cutoff radii in space and time [dmax and tmax in Eq. (1)] or

the total interest threshold can alter the distribution of

false alarm and matched objects in these regions (see the

appendix). However, altering this distribution primarily

impacts the binary OTS, POD, and FAR, and will have a

smaller impact on the weighted OTS owing to low values

of total interest near the maximum time and space radii.

The location of the highest probabilities of matched ob-

jects mirrors the location of the maximum low-level ver-

tical vorticity in each forecast (Figs. 4 and 6). This

similarity provides confidence thatmost observed rotation

FIG. 5. Time series of the (a) ensemble mean and (b) 90th percentile values of vertical

vorticity (s21) for forecasts initialized at 1915 (blue), 1930 (green), 1945 (orange), and 2000

(red) UTC. Maximum observed values of twice the azimuthal wind shear (s21) are plotted

in black.
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FIG. 6. Locations of ensemble member vertical vorticity maxima along the track of the Moore supercell at (a),(b) 1945, (c)–(e) 2000,

(f)–(i) 2015, ( j)–(l) 2030, and (m),(n) 2045 UTC. Each maximum is color coded according to the forecast initialization time, which is

provided at the bottom right of each panel with the time and forecast minute at the top left. Multiple maxima may be present at a given

grid point. Ensemble-mean simulated reflectivity at the lowest model level is contoured at 20, 30, 40, and 50 dBZ, with increasing

opacity indicating higher values. The location of the maximum observed azimuthal wind shear is plotted as a gray dot, and the damage

path of the Moore tornado is marked in black.
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FIG. 7. Ensemble probabilities of matched (blue) and false alarm (orange) rotation objects at (a)–(c) 2000, (d)–(g) 2015, (h)–( j) 2030,

and (k),(l) 2045 UTC for each grid point. Individual objects are not plotted, and each grid point may be within multiple matched and false

alarm objects across different ensemble members. The forecast initialization time is provided at the bottom right of each panel, and the

centroid of observed rotation objects is plotted as a gray dot when present. Observed azimuthal wind shear contour, Moore tornado

damage track, and distance scale are as in Fig. 3.
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objects are being correctly matched to corresponding

forecast rotation objects.

The evolution of matched rotation objects in succes-

sive forecasts is similar to the subjective evaluation. A

dramatic increase in the probability of matched objects

is present between the forecasts initialized at 1915 and

2000 UTC, particularly along the track of the Moore

supercell (Fig. 7). Additionally, each subsequent fore-

cast from 1915 UTC results in higher concentrations of

matched objects at a given time and closer proximity

between the matched objects, suggesting improvements

in both accuracy and forecast confidence with increasing

time (each row in Fig. 7). In contrast to the improvement

in forecast quality with each successive forecast, the

forecast objects become less concentrated and farther

displaced from observed objects with increasing forecast

time in each forecast (columns in Fig. 7.) This degra-

dation of forecast quality with increasing forecast time is

also apparent in the number of false alarm objects. Low

probabilities of false alarm objects are present over a

relatively large region of the verification domain during

the latter portion of each forecast (Figs. 7a,d,e,h,i,k,l).

These objects are associated with the development of

spurious rotation objects within individual ensemble

members during the forecast. Additional regions of

more highly concentrated false alarm objects are ap-

parent along the track of the two southern supercells.

These objects occur as the forecast objects become too

far displaced in space (Figs. 7k,l) or time (Figs. 7f,g) to

exceed the total interest score threshold.

Ensemble-mean6 properties of rotation objects within

the verification domain can be used as summarymeasures

of forecast quality (Figs. 8–10). Weighted object-based

FIG. 8. Ensemble-mean time series of (a) weighted object-based threat score, (b) binary object-based threat score, (c) probability of

matching observed objects (probability of detection), (d) percentage of unmatched forecast rotation objects (false alarm rate), (e) total

interest score of matched objects, and (f) the distance component of the total interest score for rotation objects within the verification

domain. Each forecast is color coded as in Fig. 5.

6 Ensemble-mean properties for object- and optical flow-based

verification are produced by averaging verification statistics cal-

culated individually for each member.
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threat scores calculated for each forecast match the

expected evolution from subjective verification (Fig. 8a).

An increase in OTS is apparent with each successive

forecast, with a large improvement in skill noted

between the first half of the 1945 and 2000 UTC

forecasts compared to the 1915 and 1930 UTC fore-

casts (Fig. 8a). This increase is a reflection of the two

early forecasts predicting strong rotation along the

track of the Moore and central domain supercells prior

to the observed development of a low-level mesocy-

clone (Fig. 5). The temporal offset in these forecasts

results in relatively low total interest scores (Fig. 8e)

despite a distance component indicating little spatial

error (Fig. 8f). Timing errors are also responsible for

the dramatic variation in binary OTS, probability of

detection, and false alarm rate over the first 15min of

the 1915 UTC forecast (Figs. 8b–d), where the majority

of predicted rotation objects are present more than

20min (tmax) prior to the observed rotation objects,

resulting in a high false alarm rate (Fig. 8d). The vari-

ation over the initial portions of the 1915 UTC forecast

illustrates the advantages of summary verification

measures weighted by total interest.

Incremental improvements with each forecast are ad-

ditionally apparent in the binary OTS (Fig. 8b), but less

prominent than those in the weighted OTS, consistent

with improvements in both the ensemble probability of

producing matching rotation objects to observations

(binary OTS) and the spatiotemporal accuracy of pre-

dicted rotation objects (weighted OTS). The relatively

low probability of detection values (Fig. 8c), which re-

main below 0.6, are a result of a low concentration of

matched objects in the two southern supercells prior to

the 2000 UTC forecast (Fig. 7) and are consistent with

lower probabilities of low-level rotation along the tracks

of the southern two supercells (Figs. 4a–d). A dramatic

increase in POD, and related binary OTS, occurs if the

subset of the domain containing the track of the Moore

supercell is considered (not shown), as would be expected

given the higher probabilities of forecast low-level rota-

tion within that storm (Fig. 4).

The degradation of forecasts with increasing forecast

time is also present in the ensemble-mean object-based

skill scores. Each forecast exhibits a decrease in the

distance component of the total interest score (Fig. 8f)

coupled with an increase in the false alarm rate (Fig. 8d)

with increasing forecast time. The increase in false alarm

rate is attributable to both the development of spurious

rotation objects as well as rotation objects too far dis-

placed in space and time to be matched (Fig. 7). The

positive bias to storm motion is the primary contributor

to the reduction in the distance component, and by ex-

tension reductions in interest score and weighted OTS,

over the course of a given forecast.

FIG. 9. As in Fig. 8, but for the (left) zonal and (right) meridional components of ensemble-mean object centroid displacement for

matched objects in the (a),(b) full verification and (c),(d) Moore supercell domain. Positive values of zonal (meridional) displacement

indicate an eastward (northward) offset in forecast rotation objects.
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Storm motion biases may be directly quantified by

considering the ensemble-mean zonal and meridional

centroid displacement for matched objects (Fig. 9).

Positive zonal displacement values, indicating an

eastward bias in stormmotion, are present and become

larger with increasing forecast time in nearly every

forecast (Figs. 9a,c). Small reductions in zonal centroid

displacement during the mid- to latter portions of each

forecast, apparent as periods of negative slope in

Figs. 9a and 9c, are attributable to spurious rotation

objects trailing the primary supercells being matched

to the observed rotation objects (not shown). These

spurious matches most often occur with rotation ob-

jects associated with the southern two supercells; if the

subset of the verification domain containing only the

track of the Moore supercell is considered, a more

consistent increase in centroid distance with time is

apparent (Figs. 9c,d). An incremental, southward dis-

placement in matched-object centroid position is ad-

ditionally apparent (Figs. 9b,d), which is consistent

with the observed southward shifts in rotation tracks

(Fig. 4) and vorticity maxima (Fig. 6) with successive

forecasts.

Both the ensemble mean and 90th percentile values of

maximum vertical vorticity in matched rotation objects

exhibit little variation among different forecasts and

during the duration of each forecast (Fig. 10). The

general similarity between the object-based and sub-

jective (Fig. 5) comparisons of maximum vertical vor-

ticity is expected, provided the maximum vertical

vorticity values within the domain occur in matched

forecast objects. The similarity of Figs. 5 and 10 provides

additional confidence that rotation objects representing

the low-level mesocyclone of each of the three super-

cells are being appropriately matched.

b. DAS verification

The ensemble-mean displacement and amplitude

score values for each forecast are largely determined by

the contribution of the amplitude component, which is

generally larger in magnitude than the distance com-

ponent (Fig. 11). Additionally, little variation in AMP

FIG. 10. As in Fig. 5, but for the (a) ensemble mean and (b) 90th percentile values of maximum

vertical vorticity for matched rotation objects.
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among different forecasts valid at the same time is

noted, which contrasts large variations over the course

of any given forecast (Figs. 11e,f). The similarity in

AMP scores between different forecasts is similar to

object-based and subjective intensity comparisons;

however, the dramatic variation with time suggests that

AMP values are being primarily driven by fluctuations

in the observed azimuthal wind shear, which will im-

pact both amplitude changes between the forecast and

verification datasets as well as the characteristic in-

tensity used to normalize the AMP score (Keil and

Craig 2009).

The DIS component exhibits larger variety among

different forecasts and generally follows the expected

forecast evolution from subjective and object-based

verification (Figs. 11c,d). A reduction in DIS, implying

a more accurate spatial forecast, is present with each

successive forecast and DIS generally increases with

forecast time, indicating larger displacement between

the forecast and observed regions of low-level rotation.

Similarly to the object-based verification (Figs. 8f and

9a,c), more slowly increasing, or at times subtly de-

creasing, DIS values are evident during the latter

portion of forecasts when calculated over the full

verification domain (Fig. 11c). This improvement occurs

as spurious regions of rotation develop trailing the two

southern supercells, resulting in an apparent, but erro-

neous decrease in distance error. A more consistent in-

crease in DIS with increasing forecast time is present

when the subdomain containing the Moore supercell is

considered (Fig. 11d).

An important difference between the object-based

and DAS methods is that DAS is only calculated when

nonzero values of both forecast and observed rotation

are present. As a result, ensemble members that do not

produce low-level vertical vorticity exceeding Fcstthresh
are not included in the ensemble-mean calculation; in

other words, DAS values do not account for missed

events. Therefore, DIS values are best interpreted sim-

ilarly to the total interest score, as a relative measure of

FIG. 11. As in Fig. 8, but for values of (a),(b) DAS, (c),(d) DIS, and (e),(f) AMP within the (left) full verification and (right) Moore

supercell domains.
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forecast quality among members producing useful

forecasts. An additional consequence of requiring non-

zero values in both the forecast and observed datasets is

that DIS scores are not available prior to 1945 UTC

when observed values of twice the azimuthal wind shear

first exceed Obthresh (Fig. 5). This unavailability ac-

counts for the apparently large improvement from the

1930 UTC forecast, for which no DIS scores are avail-

able during the first 15min of the forecast, and the

1945 UTC forecast (Figs. 11c,d). Additionally, the in-

termittent observations of low-level rotation within the

southern two supercells result in greater temporal vari-

ability in DIS scores calculated for the full verification

domain than in the subdomain including the Moore

supercell.

Similarly to the object-based centroid displacement,

the DIS score can be partitioned into zonal and merid-

ional components (Fig. 12). This is accomplished by

averaging the ensemble mean, nonnormalized magni-

tude of vectors used to morph the observation to the

forecast field with the negative of the vectors used to

morph the forecast to the observation field. Resulting

values of zonal and meridional displacement do indicate

generally positive biases to storm motion and a south-

ward displacement increment with each successive

forecast. However, these trends are subtle, do not in-

dicate increasing forecast displacement with time, and

do not match the subjective interpretation as well as the

object-based measures (Figs. 6 and 9). The lack of

clearly increasing displacement with forecast time in the

DIS components is likely a result of the morphing pro-

cess, in which vector orientation may vary in a coun-

terintuitive manner over small distances in order to

minimize the RMS error between the two fields (Keil

and Craig 2009; their Figs. 2 and 4).

c. Comparison with additional NEWS-e cases

The ability of the object-based and DAS methods to

discriminate between forecast quality is evaluated

using a small subset of low-level rotation forecasts from

additional NEWS-e cases (Wheatley et al. 2015). In

addition to the Moore supercell, verification scores are

calculated for forecasts of supercells producing long-

track tornadoes on 31 May 2013 (Bluestein et al. 2015)

and 11 May 2014. These two additional cases were se-

lected as they bracket the subjectively determined skill

in probabilistic rotation swaths generated for events

from the springs of 2013 and 2014 (Fig. 13). Forecasts of

the 31 May 2013 storm produce high probabilities of

low-level rotation over the observed tornado track an

hour prior to tornado genesis and maintain high prob-

abilities through the duration of the event (Figs. 13e–h).

In contrast, moderate probabilities of low-level rotation

are not predicted for the 11 May 2014 event until 30min

prior to tornado genesis, and the probabilistic swath is

displaced to the north of the damage track in forecasts

initialized with 30 and 15min of lead time (Figs. 13j,k).

High probabilities of low-level rotation are not pre-

dicted over the damage track until the final forecast

(Fig. 13l). Forecasts for the Moore supercell represent

FIG. 12. As in Fig. 9, but for the optical flow-derived ensemble-mean (a),(c) zonal and (b),(d) meridional displacement (km).
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an intermediate level of quality, where probabilities of

low-level rotation are higher and less displaced spatially

than those for 11 May 2014, but are lower and with

larger spatial errors than those for the 31 May 2013 case

(Figs. 13a–d).

Weighted OTS and DIS values are calculated for

each of the three cases for forecasts initialized with 45,

30, 15, and 0min of lead time (Fig. 14). Each event is

verified using a 0.88 latitude 3 1.08 longitude subset of

the full forecast domain that encompasses the rotation

track of each supercell. Generation of the forecast and

verification low-level rotation fields are identical for

each case, with the exception that only KTLX and

the Hastings, Nebraska (KUEX), radial velocities are

used for the 31 May 2013 and 11 May 2014 events,

respectively.

Forecasts of the 31 May 2013 event issued 45min

prior to tornado genesis produce dramatically higher

weightedOTS scores than those for the 11May 2014 and

Moore events (Fig. 14a).7 Additionally, DIS values for

the 31 May 2013 forecast are well below those for the

other two events, indicating less displacement between

the observed and forecast rotation tracks (Fig. 14b).

OTS scores for the 31 May 2013 forecast issued with

30min of lead time remain well above the other two

events throughout the duration of the forecast. How-

ever, large increases in OTS are apparent for both the

11 May 2014 and Moore forecasts, reflecting the devel-

opment of higher probabilities of low-level rotation near

the observed rotation tracks. Additionally, higher values

of OTS are present during the early portions of the

FIG. 13. NEWS-e probabilities of 500–2000-m average vertical vorticity exceeding 0.003 s21 for 1-h forecasts of the (top) 20 May 2013

Moore, (middle) 31 May 2013, and (bottom) 11 May 2014 tornadic supercells. Forecasts are initialized (a),(e),(i) 45; (b),(f),( j) 30;

(c),(g),(k) 15; and (d),(h),(l) 0 min prior to the time of tornado genesis. The Obthresh contour of twice the observed azimuthal wind

shear (s21) is plotted in dark gray, and damage paths are marked in black for each case.

7 Smaller initial OTS values for the Moore supercell are pro-

duced compared to the full verification domain (Fig. 8a), indicating

that much of the forecast skill at that time was associated with

predictions of the central domain supercell. These values are

consistent with low probabilities of rotation along the Moore track

in the 1915 UTC forecast (Fig. 13a).
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Moore forecast than for 11May 2014, which is indicative

of the smaller spatial displacement apparent in the DIS

values (Figs. 14c,d). Both the OTS and DIS scores in-

dicate further improvement in quality for the first half of

the 1945 UTC (T 2 15min) Moore forecast, with max-

imum (minimum) OTS (DIS) values equaling those for

the 31 May 2013 forecast (Figs. 14e,f). In contrast, OTS

values remain comparatively low for the 11 May 2014

forecast, with larger DIS values reflecting the northward

spatial displacement in the probabilistic swath at this

time. High predicted probabilities of low-level rotation

collocated with the observed damage tracks are pro-

duced for all three events in forecasts initialized at the

time of tornado genesis (Figs. 13d,h,l). This apparent

skill is indicated by the objective verification scores,

which produce similarly high (low) values of OTS (DIS)

for each forecast throughout the forecast period

(Figs. 14g,h).

FIG. 14. Time series plots of ensemble-mean (left) weightedOTS and (right) DIS for forecasts initialized (a),(b) 45, (c),(d) 30, (e),(f) 15,

and (g),(h) 0min prior to genesis of the strongest tornado observed during the 20 May 2013 Moore supercell (blue), on 31 May 2013

(green), and on 11 May 2014 (orange). Each forecast score is calculated for only the target supercell domain.
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5. Summary and discussion

Two spatial verification methods, a time-weighted,

object-based technique based on the MODE algorithm

(Davis et al. 2006a,b) and the optical-flow-based dis-

placement and amplitude score (Keil and Craig 2009),

have been applied to convective-scale ensemble fore-

casts of low-level rotation. Forecast and verification low-

level rotation fields are created by postprocessing

predicted vertical vorticity and observed single-Doppler

azimuthal wind shear in an effort to isolate low-level

mesocyclones. The spatial verification techniques are

assessed for their ability to reproduce subjective in-

terpretations of forecast quality and evolution.

The object-based verification method is found to

produce results consistent with subjective interpreta-

tions of each forecast (Figs. 4–10). Correspondence

between forecast and observed low-level rotation ob-

jects is calculated according to a total interest score

weighted primarily on spatial and temporal displace-

ment. Matched objects, representing the highest

available total interest score between forecast and

observed rotation objects, are consistent with sub-

jectively interpreted locations of maximum predicted

vertical vorticity for the 20 May 2013 case (Figs. 4, 6,

and 7). Additionally, utilization of ensemble-mean

values of the object-based threat score (Johnson et al.

2011; Johnson and Wang 2013) as a summary score

reproduces apparent improvements in quality between

successive forecasts, as well as degradation in quality

with increasing forecast time (Figs. 4 and 6–8). Parti-

tioning the OTS into individual components provides

further information on the factors determining changes

in quality (Fig. 8). Examples include a binary calcula-

tion of OTS, which provides an area-weighted measure

analogous to a threat score, and the total interest value,

which provides a measure of spatiotemporal proximity

between objects that may be further decomposed to

isolate the contributions of spatial and temporal dis-

placement. Additionally, bulk measures of matched

objects can quantify specific forecast errors; for exam-

ple, changes in the ensemble-mean centroid displace-

ment amongmatched objects captures a positive bias in

storm motion in the 20 May forecasts (Fig. 9).

Variation in the distance component of the displace-

ment and amplitude score is consistent with both

subjective and object-based measures of spatial dis-

placement in the 20 May forecasts (Fig. 11). However,

application of the DIS component to forecasts of low-

level rotation is limited by a requirement that nonzero

values of forecast and observed rotation are present.

The relatively sparse and transient nature of low-level

mesocyclones compared to other forecast products such

as precipitation results in a reduced ability for DIS to

account for rapid changes in observations. Additionally,

DIS scores are limited to periods when low-level me-

socyclones were observed, and ensemble members that

do not produce strong low-level rotation are not in-

corporated into the DIS score. It is therefore recom-

mended that DIS be utilized as a relative measure of

spatial displacement among members producing strong

low-level rotation, similar to the distance component of

the total interest.

The weighted OTS and DIS scores are additionally

found to reproduce subjective evaluations of probabi-

listic low-level rotation forecasts issued across a small

subset of tornadic events during the springs of 2013 and

2014 (Figs. 13 and 14). Discrimination in forecast quality

between different cases in both OTS and DIS values

matches the subjective interpretation of probabilistic

rotation swaths for three events identified as relatively

poor, intermediate, and good forecast quality (Fig. 13;

Wheatley et al. 2015).

Both the object-based and DAS methods produce

minimal variability in maximum intensity measures be-

tween different forecasts (Figs. 10 and 11). This result is

unsurprising considering the imperfect verification

dataset and limitations in model resolution. Utilizing

single-Doppler azimuthal wind shear as a proxy for

vertical vorticity requires an assumption of solid-body

rotation, and the effective resolution of observations

will differ from those in the model, despite being in-

terpolated onto the same grid. Additionally, the hori-

zontal grid spacing of 3 km utilized by theNEWS-e is not

sufficient to represent many storm-scale dynamic pro-

cesses within supercells, resulting in only partial reso-

lution of simulated low-level mesocyclones (Potvin and

Flora 2015). These discrepancies are apparent in the

different representations of low-level mesocyclones in

forecast and verification fields (Fig. 1) and make an as-

sessment of ensemble skill in predicting the intensity of

low-level rotation prohibitively difficult at the current

time.

There are several limitations to the methods pre-

sented herein. Primarily, a large amount of tunable

parameters are required in the development of the low-

level rotation datasets and in calculation of the verifi-

cation scores. Averaging, convolution, and thresholding

applied to both the forecast and verification datasets

may be altered to produce different representations of

low-level rotation. Parameters chosen for this study are

similar to prior methods used in probabilistic rotation

forecasts (e.g., Dawson et al. 2012; Yussouf et al. 2013;

Jones et al. 2016; Wheatley et al. 2015; Yussouf et al.

2015) and have been chosen to best isolate the fea-

tures of interest, observed and forecast low-level
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mesocyclones, in the three cases considered (Wolff et al.

2014). However, application of these methods to a much

larger database of probabilistic rotation forecasts is

necessary to determine their ability to consistently iso-

late areas of intense low-level rotation in varying con-

vectivemodes and large-scale environments. Changes to

tunable parameters used by the spatial verification

methods, such as maximum allowable space offsets for

object matching or image morphing, will result in vari-

ations in subsequent skill scores. However, these varia-

tions are consistent across different forecasts, resulting

in changes in the absolute magnitude of skill scores

but not relative changes in scores between different

forecasts.

Only ensemble forecasts of low-level rotation, used as

an indication of tornado likelihood, are considered in

this study. As Warn-on-Forecast is envisioned as a total

hazard short-term prediction system (Stensrud et al.

2009, 2013), extension of the methodologies presented

herein to probabilistic forecasts of severe hail, straight-

line winds, and flash flooding will be necessary. This

extension will require further development and re-

finement of observational proxies for thunderstorm

hazards or the development of high-resolution numeri-

cal analyses of convective storms (Gao et al. 2013) to

serve as verification datasets.

We do not recommend that the spatial verification

methods presented herein be used in place of qualitative

assessments of probabilistic rotation tracks for individ-

ual case studies. Rather, we envision the objective scores

being useful for quantifying differences across a large

dataset of forecasts, as will be created as prototype

Warn-on-Forecast systems approach operational imple-

mentation. Automation of spatial verification methods

will allow forecasts run with variations in model and data

assimilation methodology to be intercompared in order

to assist in determining best practices for convective-

scale numerical weather prediction. Additionally,

performance of probabilistic forecasts of low-level ro-

tation across different storm modes and environments is

largely unknown, and may be quantified through com-

parison of spatial verification skill scores.
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FIG. A1. Ensemble-mean time series of (a) weighted object-based threat score, (b) binary object-based threat score, (c) probability of

matching observed objects (probability of detection), and (d) percentage of unmatched forecast rotation objects (false alarm rate) for the

full verification domain of the forecast initialized at 1945 UTC 20May 2013. Plots are included for varying total interest thresholds Imin of

0.2 (solid), 0.3 (dashed), 0.1 (dashed–dotted), and 0.0 (dotted), in which no threshold was applied.
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freely provided enthought python build and SciPy,

matplotlib, Basemap, and scikit-image python libraries

were used to create the analyses herein. PSS was sup-

ported by a National Research Council Research asso-

ciateship and additional funding was provided by

NOAA’s Warn-on-Forecast project.

APPENDIX

Sensitivity of Object-Based Verification to the Total
Interest Threshold

Verification measures used with the object-based

method will be sensitive to changes in tunable parame-

ters such as the maximum allowable offsets in space dmax,

time tmax, and the total interest threshold required for

matching objects. A representative example of this sen-

sitivity using the total interest threshold is provided in

Fig. A1. As would be expected, a reduction of the total

interest threshold results in more matched objects

(Fig. A1c), fewer false alarms (Fig. A1d), and a resulting

increase in the binary OTS (Fig. A1b), mostly during the

latter portion of the forecast when rotation objects are

near the prescribed maximum space and time radii. As

the variation inmatching frequency occurs in objects with

relatively low total interest scores, the weighted OTS is

minimally affected by changing the threshold (Fig. A1a).

Additionally, assessment of the relative quality across

forecasts is mostly insensitive to changing tunable pa-

rameters, as they will induce consistent changes in veri-

fication measures across different forecasts.

Variation of the maximum time and space offsets for

object matching will produce larger changes to weighted

OTS values, since both the relative frequency of the

matched objects and the total interest scores of the

matches will change. However, as with variation of

the total interest threshold, these changes will occur in a

consistent manner, preserving the ability to in-

tercompare different forecasts.
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